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Synopsis

This paper investigates single particle properties in a Fermi gas with interaction at
the absolute zero of temperature. In such a system a single particle energy has only a
meaning for particles of momentum |&| close to the Fermi momentum %p. These single
particle states are metastable with a life-time approaching infinity in the limit |%| — kp.
The limiting value of the energy is called the Fermi energy Ep. As a special case of a
more general theorem, it is shown that for a system with zero pressure (i.e. a Fermi
liquid at absolute zero) the FFermi energy Er is equal to the average energy per particle
Ey/N of the system. This result should apply both to liguid Hes and to nuclear matter.

The theorem is used as a test on the internal consistency of the theory of
Brueckner 1) for the structure of nuclear matter. It is seen that the large discrepancy
between the values of Er and Ey/N, as calculated by Brueckner and Gammel 2),
arises from the fact that Brueckner neglects important cluster terms contributing
to the single particle energy. This neglection strongly affects the calculation of the
optical potential.

1. Introduction. In Brueckner’s theory 1) on the structure of nuclear
matter the interior of a nucleus is considered as a gas of strongly inter-
acting Fermi particles. To each particle a separate energy E; is assigned,
which depends on the momentum / of the particle. This energy is written
as the sum of the kinetic energy /2/2M and a potential energy V;. The
computation of V; from a set of implicit equations is the main problem in
this theory. Once V; is known, the energy of the whole system in its ground
state is given by the simple formula

Eo = Z]l|<kp (ZZ/ZM + %Vl)- (1)

The summation is extended over all occupied states, ¢.e. over all momenta
smaller than the Fermi momentum &g *).

One might ask the question, what is the physical meaning of this single
particle energy E; or the “‘potential energy’’ V; in a system of strongly
interacting particles. To answer this question we -consider the theory of
Brueckner as a special approximation of a general time-independent

*) We put & = | throughout this paper.
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perturbation formalism which was developed earlier by the authors 3)
(to be quoted as I, IT and III). As will be shown in section 2, it then turns
out that only to particles with momentum / in the neighbourhood of the
Fermi momentum %r an approximate energy E; can be assigned. Only
in the limit that |/| approaches %2p the energy E; gets a precise meaning.
This limiting value of E; is called the Ferms energy Ep.

Section 3 will be devoted to an important theorem concerning this Fermi
energy. It will be shown rigorously that for a system of Fermi particles at
its ground state the Fermi energy as defined above is equal to the mean
energy per particle, provided the system has zero pressure. Nuclear matter
is an example of such a system.

This theorem, which is a special case of a more general formula, derived in
the first half of section 3, can be used as a test for the validity of the ap-
proximation of Brueckner. In recent calculations of Brueckner and
Gammel 2) the ground state energy per particle is found to be —15 MeV,
whereas these authors find for the Fermi energy the value — 34 MeV *). The
cause of this discrepancy is investigated in the last section. Indications are pre-
sented that the largest part of the discrepancy comes from the inaccuracy of Ep.

2. The single particle energy. The considerations of this and the following
sections are mainly based on I and III. We consider a system of a large
number N of Fermi particles enclosed in a box of volume 2. For simplicity
we assume the particles to have no spin or charge. We are interested in
particular in the case that both N and £ are very large with a finite density
p = N/2. The hamiltonian H of the complete system is written as a sum
of the kinetic energy Hy and the interaction ¥, which in the occupation
number representation for plane wave states have the form

Ho = [; (Il[*/2M) &*&,,
V =1 uiag, Vilelsla)é *E1,*E1 60,
For the notation we refer to I1I. & and &* are annihilation and creation
operators for a particle with momentum /, obeying the anticommuitation
relations
{6k, &) = Q(270)73 6.
In the limit £ — oo the right-hand side goes over into the Dirac §-function
ok —1).

The ground state |po> of the unperturbed system is the state where all
states of the Fermi sea, s.e. all one particle states with momenta less than
the Fermi momentum kg, are occupied. The Fermi momentum &p is relatec
to the particle density by p = kp3/6n2.

*) As Dr. Brueckner kindly pointed out to us, the numbers quoted here are not quite correc
and must be replaced by — 14.6 MeV and — 27.5 MeV. The discrepancy is therefore 13 MeV. (Not
added in proof).
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All other stationary states of the unperturbed system are characterized by
the momenta %y, &9, . ... of the additional particles present and the momenta
my, Mg, . ... of the holes present (holes are unoccupied states of the Fermi
sea}. We respectively use the letters % and » to indicate momenta larger and
smaller than the Fermi momentum %z. Because the annihilation of a particle
in the Fermi sea is equivalent to the creation of a hole, it is useful to
reinterpret &, and &,* for |m| < kp as creation and annihilation operators
for holes.

We have thus obtained a hamiltonian which exhibits a close formal
resemblance to a field theory with pair creation. There is, however, an im-
portant difference, which will be considered in this section. Whereas in field,
theory, for not too strong coupling, to each unperturbed state corresponds
at least one stationary state of the complete system; this is not the case in
our system, which is essentially dissipative. In I and II a simple criterion
was given for the existence of a perturbed stationary state corresponding
to a state |«p of the unperturbed system. It amounts to the existence of a
pole for the expectation value of the resolvent R(z) = (H — 2)~1 for the
state |a>. As shown in III the expectation value Dg(z) of R(z) for |po> has
always a pole. Consequently there exists a stationary state |yo>, the ground
state of the system of interacting particles, which corresponds to the un-
perturbed ground state |po). The energy of |yo> we call Eo. The explicit
expression of |we> and Ey was determined in III.

Next we consider an unperturbed state with one additional particle with
momentum £ (|&|> kr); it will be denoted by |%;>. According to I we must
study the function Dy(z) = Dy(z) % Do(z) *) of the complex variable z. Dy(z)
is the expectation value of the resolvent R(z) for |k;> except for a factor
8(0): ;B |R(2)| k';> = 6(k — k') Dy(z). The product % is the convolution
product defined and extensively used in III. Di(z) was defined in III
(section 10) by a series in increasing powers of the interaction V, all terms
of which can be represented by means of connected diagrams with one ex-
ternal particle line at both ends (the diagrams used are defined in III,
section 3; particle lines have arrows pointing to the left, lines corresponding
to holes the opposite direction). The decisive point is now whether or not
Dy (2) has a pole. A pole would mean that the complete system has a statio-
nary state corresponding to the unperturbed state |%;>. The absence of a pole
would reveal the dissipative nature of the unperturbed state |£;>. As shown
previously (see a fourth paper 4) to be quoted as IV) Dg(z) has no pole and
consequently Dg(z) can have none, so that the state |2;>isa dissipative one 1).
The only singularity of Dg(z) is a cut in the complex plane along the real
axis, running from some point Ep, independent of %, up to 4-co. Whereas the

*) To avoid the unnecessary appearance of the term &g in our formulae the function 5;;(50 + z)
defined in 111 is denoted here simply as Dg(z).
t)} For a further discussion of dissipative states see 5).
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real part of Dg(z) varies continuously if we cross this cut, the imaginary
part changes its sign. If we now consider the discontinuity of the imaginary
part of Dy(z) for all points of the cut, we find, in the case that || is very
close to the Fermi-momentum Zg, a high narrow peak for some point Ej *).
This situation is to be compared with the é-singularity, which one would
find if Ex was a pole of Dy(2). In the limit |k| — kp the point Ej approaches
the branching point Ep, the difference E; — Ep being proportional to
|k| — kp. The width I'y of the peak decreases as (Ex — EF)2, so that for
|#| — kr small enough, the width of the peak is small compared to its
distance from Ep. ' _

Such a situation was analysed in III (section 14). In the case that I'x <
& By — Ep a state vector |px> can be constructed, which corresponds to a
metastable state with an approximate energy Ej; + Eo¢ and a life-time
equal to ['3~1. The metastable character of |p;> is exhibited by the equation

Sy |7 yi> = 03(R" — k)-exp [—i(Eo + Ex)t — I [1]],

which holds for values of ¢ of the order of Iyl t). The energy Ej can
then be interpreted as the energy of a metastable particle with mo-
mentum |k|> kr, moving in the Fermi gas with slow dissipation of its
momentum and energy into collective types of motion of the gas. The
success of the optical model for the scattering of nucleons on heavy nuclei
is experimental evidence for the existence of such metastable states in
nuclear matter. Conversely we can say that our theory of the Fermi gas
with interaction accounts for the low energy behaviour of the optical
potential.

In the limit of |k| — % the single particle energy Ej tends to Ep. We call
this limit the Ferms energy. The life-time Iy~ tends then to infinity, and
it can even be shown that EF is the pole (in the somewhat broadened sense
defined in III section 9) of the function Dy, (z). Hence a state with one addi-
tional particle at the surface of the Fermi sea is exactly stationary, with an
energy Eo + Ep.

Instead of states with an additional particle one can also consider states
with a hole of momentum |m| < kp. This case is very much analogous to the
former one. The function Dp(z), which is defined in terms of connected
diagrams with one external hole line at both ends, has for |m/| close to kg
a similar behaviour as Dy(z) for |k| close to kr. This implies for the case
that |m| is close to kr the existence of a metastable state of a hole, with

*) In IV this quantity was denoted by Ek, whereas the notation Ex was there used for Eo + Ek.
The notation used here agrees with the usual one in the Brueckner theory.

1) In III, eq. (14.8) and the subsequent equation as well as.their derivation are incorrect. The
definition of the two states lip, >+ as given by eq. (14.2) of III, however, is correct. In the case that
le) = |k;) these two states are identical and are denoted by ipg).
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an approximate energy Eg — Ey,. Here —E,; isc<the point on the real axis
where D,,(z) is strongly peaked *). It can be interpreted as the energy of
a hole of momentum — near the surface of the Fermi sea, and E, therefore
can be regarded as the energy of a particle of momentum  in the Fermi sea.
In the limit |m| = kg, Dm(z) does have a pole which, as was surmised in IV
and will be confirmed in the next section, is equal to —Er, where Ep is the
Fermi energy as defined above.

We should like to stress here that all our considerations are based on the
assumption of convergence of all series involved. It may very well be that
in addition to the ground state and metastable excited states here considered
for the Fermi gas with interaction there exist another ‘“abnormal’’ stationary
state and metastable excitations of it, depending in a singular way on the
two-body interaction and therefore not directly accessible to our methods.
The possibility of such abnormal states for a Fermi gas with attractive
forces has been established by Bardeen, Cooper and Schrieffer 6) in
their theory of superconductivity. How the abnormal states can be obtained
in the perturbation formalism based on diagrams has been shown by
Bogolubov 7). The possible existence and observability of such abnormal
states for nuclear matter and liquid helium 3 are questions of great impor-
tance which we shall not discuss here.

3. Theorem on the Fermi energy Ep. We start this section with the deri-
vation of a formula for Dy(z), which brings to light a close similarity between
this function and the ground state expectation value <@o |R(2)| go> = Do(2).
We shall make an extensive use of the methods presented in III. Before
doing so we want, however, to stress the following point. As is well known,
the general perturbation method as developed in I, II and III is only
exact if the particle number N and the volume £ of the system are so large
that terms proportional to 2-! or N1 can be neglected. Nevertheless
several definitions and results of III are also exactly valid for systems with
arbitrary finite N and ©. This is the case in particular with the definitions
and calculation rules of diagrams, diagonal diagrams, connectedness and also
with the theorem on the convolution of the contributions of two diagrams
(section 7, eq. 4). We use this important fact in the following derivation.

We take a finite cubic box with volume £, and impose, as usual, periodic
boundary conditions. Let the state vector [p>, which is normalized to one,
describe a state of the unperturbed system where N particles occupy N given
single particle plane-wave states. This set of N single-particle states we
shall call the “‘sea”. The state |p> may be different from the unperturbed
ground state [po). All other states of the unperturbed system can be obtained
from |@)> by the application of suitable operators &x* or &, thereby creating

*) Ep, in this paper corresponds to the quantity —Epmin IV. The single particle energy for particles
in the Fermi sea is now Ep.
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additional particles or holes. Clearly the momenta % of the additional
particles must be outside the sea, whereas the momenta m of the holes
must belong to it. _

In calculating the diagonal matrix element <¢ |R(z)| ¢> we make use of
diagrams. If, just as in 111, lines running from right to left (from left to right)
represent particles (holes), we obtain diagrams identical with those which
were used in III for calculating Dg(z) = <go |R(2)| o). Their contributions
are, however, different, because the momenta % and m of the virtual particles
and holes have now to be summed over different, discrete sets of values. The
diagrams contributing to <@ |R(z}| ¢> are either connected or consist of two
or more connected parts. If we denote the total contribution to <¢|R(z-+&)|g>
of all connected diagrams by B(z), with ¢ the energy of |¢>, the total contri-
bution to <p |R(z + ¢) |¢> of all diagrams consisting of two connected parts
is equal to

1 B(z) * B(z).

Here we used the convolution in the complex plane introduced in III
(section 7). The factor } accounts for the fact that this convolution gives
each term twice. Proceeding in the same way with diagrams consisting of
three and more components, one finds easily

@|R(e+2) |p> = — 272+ B(z) + }B(2) * B(2) + 1 B(2) * B(2) ¥ B()) + . ... (2)
For the special choice where |[p> = |po> equation (2) leads to

Do(eo + 2) = — 271 + By(2) + 3Bo(z) * Bo(z) +

+ 4Bolz) * Bo(z) * Bo(s) + ... 9), 3)
where By(z) is defined as the sum of the contributions of connected ground
stdte diagrams; g¢ is the energy of the unperturbed ground state jgo).
. We now also apply (2) for another choice of |p>. We take for |p)> the
unperturbed state |pz>, where in addition to the N particles in the
Fermi sea of |po)> there is an extra particle of momentum % (|k|>kFr). The
total contribution of all connected diagrams (without external lines) to
<o |R(e + 2)| px>, where ¢ = g9 + k2/2M, we denote by By(z). Equation (2)
reads for this case
{p| R(go + R2/2M + z) |px> = — 271 + By(z) + 3By(z) % B(z) +

+ % Bi(z) % Bg(2) ¥ B(z) + .....

Introducing the notation Bg(z) — Bo(z) = Bj(z) we are lead to the equation

<pr| Rleo + #2/2M + 2)| s> = — 271 + (Bo(2) + B(2)) +
+ 3(Boz) + Br(z)) * (Bo(z) + Bi(z) + ... ..

If we compare this series with the exponential series we see immediately
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that it can be written as the convolution of twd functions one of which, by
equation (3), is equal to Do(eg + 2z). Thus

<@k [R(so + K2J2M + 2)| gp> —
= Do(eo + 2) * [—2z7% + Bi(2) + $Bu(2) * Bi(2) + ....]. (4)

The state wvectors |px> and |k;> = &| o> describe the same state.
Remembering their different normalization we can write

;> = Q12(2m) =32 |
Hence

Di(z) 83(k — k) = GE |R(2)| k3> = Sk GRR(2)| k3> =
= Q(27)78 0p-,x <px |R(2)| pi> = <pi |R(2)| pi> 33(k — k),

where we used the relation between Kronecker symbol and d-function for
finite & (see III, section 2):

8k — k') = Q(27)3 Sp.ie-.
We see that
<pr |R(2)|pr> = Di(z). )

As we know Dy(z) can be expressed very simply in terms of Dg(z), which
is defined by means of connected one particle diagrams, and Dy(z) by the
formula (see III (10.1))

Dy(eo + z) = Dy(z) % Do(go + 2). (6)
Comparing (4) and (6) we get
Dy(k?2M + 2) = — 271 4 By(z) + 3Bi(z) % Bi(z) +
+ 3Bi(z) * Bi(z) % Br(z) + ... .. (7)

This equation, which is formally quite similar to equation (3) for Do(z),
is strictly valid for a finite system. We are , however, specially interested in
the case that both 2 and N are infinite. We therefore study the function
By(z) in this limit. As follows from its definition the function By(z) can be
obtained from Byg(z), if in the latter each summation f; corresponding to a
particle line is replaced by (/x, — (27)32-1 X term with k; = %) and each
summation f,, for a hole line is replaced by (/,,, + (27)3£2-1 X term with
my; = k). Keeping in mind that By(z), which was defined in terms of connect-
ed ground state diagrams, is proportional to £ in the limit of 2 — co, we
see that By(z) = By(z) — Bo(z) contains a main term independent of £,
and other terms which vanish if 2 tends to infinity. The function By(z) is
therefore well defined also for an infinitely large system. Replacing summa-
tions by integrations and keeping only those terms which are independent
of the volume 2, By(z) is calculated in the following way. It is a sum of terms,
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each of which is obtained from the function (27)% 2-1 By(z) by putting the
momentum of one of the lines equal to %2 and performing the integration over
all other momenta. If the momentum which is put equal to & belongs to a
particle line, the corresponding term gets a minus sign. Both sides of
equation (7) have well defined finite limits for £ — co. We can now return
to this limiting case.

Although equation (7) for general %k is interesting in itself, giving an
alternative way of calculating Dy(z), we are here particularly interested
in the limit of || tending to kp. In this limit the relation between Bj(z) and
By(z) has the following very simple form

— d
B, (2) = 2nkp~2 Tor (Bo(2)/2). (8)

To prove equation (8) we notice that Bo(z)/22 depends on %z only through
the limits of integration of the integrals over, particle and hole momenta.
Differentiation of Bo(z)/22 with respect to %r gives a sum of terms, in each of
which the momentum of one line is put equal to kp. There is in addition
a common factor 4nkp? resulting from integration over the surface of the
Fermi sphere. Also here one gets a minus sign if the fixed momentum belongs
to a particle because then kp appears in the lower integration limit. The
factors 4nkr? and 2n2/kp? give together exactly (2z)3, thus establishing
equation (8). Using the well known relation between %z and the density
p= N /Q .

p = kp8/6m2,
equation (8) gets the simpler form
- d
Bre(2) = 5= (Bo(2)/22). (%)
o

We now make essential use of the great formal similarity of equations (3)
and (7). Clearly Do(eo + z) changes into Dyg(k2/2M + z) if in (3) Bo(2) is
replaced by Bi(z). It was shown in III (section 9) that Do(ep 4 2z) can be
expressed very simply in terms of the function Go(eo + 2) = 22Bo(z). In
particular Do(eg + z) was found to have a simple pole at z = — Go(go) with
the residue exp(— G¢’(eo)), where the prime means the derivative with
respect to z. This was a consequence of the fact that 22Bg(z) = Go(eo + 2)
had no singularities on the negative real axis of the z-plane. The same
property holds for z2Bj(z) when |k| = kp. By analogy we therefore conclude
immediately that Dy, (kp2/2M -+ z) has a pole at the point

. = d _
z = — lim, 4 [212By,(21)] = — & (Go(e0)/9), (10)
with a residue

exp | — j—p @' (ea@) |
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As follows from the definition of the Fermi energy Ep, the pole of
Dy, (kp?[2M + 2) is equal to AEp = Ep — kp?/2M. We have thus from (10)

d
AEp = — (4Eo/Q).
dp

The same relation holds for the kinetic parts of Ep and Ey, hence

Er =di (Eo/Q). (11)
P

This equation, if written in the equivalent form

oE,
- (25,
F N /o
where the derivative is taken at constant {2, shows that the Fermi energy
Ep, as defined in the previous section in terms of one-particle diagrams, is
equal to the change in ground state energy of the system produced by
addition or removal of one particle at constant volume.

For the function Dp(z) (}m| < kr), which is the counterpart of Dy(z)
for holes, one can proceed in exactly the same way. Instead of (7) one finds

Dp(— m22M + z) =
= — z71 + Bp(2) + 4 Bm(2) % Bu(2) + %Bm(z) *Bm(z) % Bp(2) + ..., (12)

where Bj(z) is defined in exactly the same way as By(z), except for the
momentum % being replaced by » and the roles of particle and hole lines
being interchanged. It is easily seen that the limit of Bj(z2) for |m| — kg
is equal to — By, (z). Forming now the convolution of Dy(k%/2M + z) and
Dy(— m2/2M + 2) for |k| = |m| = kp one finds, after an obvious shift of
z in both functions

Dy(z) % Dp(z) = — 271, for |k| = |m| = kp.

This equation implies, that the poles of Dy(z) and Dy(z) for |k| = |m| = kr
add up to zero, while the corresponding residues have a product equal to one.
Since the sum of the poles is zero, the energy of a hole at the surface of the
Fermi sea is equal to —Ep. Therefore the energy E; of a particle of mo-
mentum |J| close,to %, as defined in section 2 for || smaller or larger than
kp, is continuous at |I| = kp.

Equation (11) can be expressed in terms of the energy per particle instead
of the energy per unit volume:

d
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In terms of the pressure

oEy d
p= = (G )= 5 (o)

this equation reads
Ep = Eo/N + p/p.

In the case that the system is in equilibrium, 7.e., at a density such that the
pressure vanishes, we obtain the equation

'Ep = Eo/N. (13)

This, equality of the Fermi energy and the average energy, which we have
proved generally, was derived recently by Weisskopf 9 on the basis of
the independent particle model. Bethe 19) considered it to be only a rough
approximation.

4. Test on the accuracy of the theory of Brueckner. In this last section the
theorem (13) derived in section 3 will be used as a test on the validity of the
Brueckner theory. Recently very accurate calculations on the basis of this
theory have been made by Brueckner and Gammel 2). The following
discussion will be based mainly on the results of their work.

Our considerations will be of special interest because the calculations of
Brueckner and Gammel show that their results vary strongly with slight
changes in the forces between the particles *). Good agreement with the ex-
periments does therefore not guarantee the accuracy of the theory. The
test to be discussed here, on the contrary, is independent of the choice of
the forces, for equation (13) must hold for all forces.

For the average energy Eo¢/N and the Fermi energy Er Brueckner and
Gammel find —15 MeV and —34 MeV respectively. There is a discrepancy
of about 20 MeV, which shows that at least one of these values is very
inaccurate. To investigate the origin of the discrepancy we consider the
theory of Brueckner as an approximation of our exact perturbation
formalism, as was done in IV t). It was shown there how one can obtain
the theory of Brueckner from the exact theory by selecting only those
terms which correspond to a certain class of diagrams. The relevant terms
for Eg, Ex and Ey, (|k] > kp and |m| < kF) are represented by the diagrams
of type a, b and c of fig. 1 **).

Let us consider equation (3) and equation (7) where By(z) is obtained

*} We are indebted to Dr. J. L. Gammel for communication of this and many other as yet
unpublished results. .
1) The equation for the scattering matrix G in IV at the bottom of page 537 contains an error.
The energy denominator must read Ekl + ETkz’—— IETzal —_ lEldl-
**) The additional complications originating from the use of shifted energies in the denominators
are not relevant for our discussion and are omitted for simplicity.
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from By(z) in the way prescribed in section 3. If we approximate Bg(z) in
these equations by taking the diagrams of fig. 1a only, we must still ex-
pect that the approximate values one then finds for Er and Ep/N coincide
(the latter value is the Brueckner approximation for the binding energy).

> <>

C

Fig. 1. The Brueckner diagrams. The diagrams a, b and ¢ correspond to the ground
state energy Eo and the energies E; and E,, of particles and holes respectively.

The function B(z) in the approximation now considered is equal to the sum
of the contributions of all single particle diagrams, obtained from the
ground state diagrams of fig. la by replacing any internal line by two ex-
ternal particle lines. This leads to two types of diagrams. The first type,
where one of the hole lines is replaced by two external particle lines, is
shown in fig. 15. The other type, shown in fig. 24, is obtained from fig. 1a by
replacing one of the many internal particle lines by two external particle

/—-4*

a b

Fig. 2. This figure shows some single particle energy diagrams neglected in the theory
of Brueckner; the diagrams a and b correspond to particles outside and inside the
Fermi sea respectively.

lines. It is seen from (7) that in the present approximation Dg(z) is a sum of
the contributions of these diagrams and of the more complicated ones
constructed by linking together two or more of such diagrams. All these
single particle diagrams, with the exception of the one in fig. 15, are ne-
glected in the theory of Brueckner. They contain three and more particle
clusters. From the numerical discrepancy between E¢/N and Ep found, as
mentioned above, by Brueckner and Gammel, we must conclude that for
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|| = kr the total contribution of the diagrams neglected in the Brueckner
theory is considerable. It must account for a difference of about 20 MeV.
It seems reasonable to suppose that among the neglected terms the most
important ones are those represented by diagrams of the type of fig. 2a and
the corresponding diagrams for holes in fig. 2b. This is a.lso suggested by
the following consideration.

The theory of Brueekner can be considered as the first term in the so-
called cluster expansion 11). Using the K-matrix instead of the interaction V
all quantities are expressed by means of a very much smaller number of
diagrams, namely those diagrams, where no two successive vertices are con-
nected by two particle lines (Goldstone 11) called them irreducible; we
have‘used this term in III already with another meaning ). The diagrams
corresponding to the first three terms of the cluster expansion for Eg are
shown in tig. 3. To each dot there corresponds a K-matrix. The first term in
the figure gives the Brueckner approximation; it corresponds to diagram
a of fig. 1. The cluster expansion car be considered as a power series in the

Fig. 3. The first three diagrams of the cluster expansion for Eq.

K-matrix. The Brueckner approximation is based on the assumption that
this series converges rapidly. The second term in fig. 3 was calculated by
Bethe 19) for the case of Yukawa forces. It was found to be less than 1 MeV,
which is indeed very small compared to the main term. We notice from fig. 3
that the ‘cluster expansion for Eo contains no term with two K-matrices.
This has the consequence that even for a comparatively slow convergence the
first term can be a reasonably accurate approximation,

The first two diagrams of the cluster expansion for the single particle
energy E;, are given in fig. 4a for || > kp, in fig. 4b for |I| < kp. Also here
the first diagrams of a and b give the Brueckner approximation and corre-
spond to diagrams & and ¢ of fig. 1. Comparing the first diagrams in fig. 3
and fig. 4b we find the well-known relation, characteristic of the Brueckner
theory, between the energy shift 4Ey of the ground state and the shift
Vi = E; — I12]2M of the single particle energy:

AEo = 30(2n) [{ d¥mV,

which is another form of (1). In the case of particles with spin and isobaric
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spin } a factor 4 must be added at the right-hand side. One sees again that
(1) is not an exact equation *).

The cluster expansion for E; involves a term with two K-matrices which
might be quite appreciable in case of a slow convergence of the series. This
term corresponds exactly to the type of diagrams shown in fig. 2, so that we
must expect the neglection of the diagrams in fig. 2 to be largely responsible
for the discrepancy between E¢/N and Ep in the theory of Brueckner.
We have made a rough estimate of this term, for spin and charge independent
Yukawa forces. Making the same approximation as Bethe did in his calcu-
lation of the three-particle cluster term in Ey, we find approximately 12 MeV
for the second term in fig. 4a or b, for a momentum || = Ap. This shows that
even for these unrealistic forces the main single-particle energy term left out
by Brueckner is quite large. A calculation of this term and other cluster
terms neglected in the Brueckner theory, on the basis of more realistic
forces with a repulsive core, would be very interesting. We may conclude
already, however, that in the theory of Brueckner the single-particle
energy is treated very inaccurately. The influence of this inaccuracy on the
calculation of the ground state energy, which manifests itself only through
the energy denominators, is probably not very large in the nuclear case. For
the calculation of the optical potential the situation is completely different
and one clearly must take into account the terms which we discussed in the
present section.

a Q+©+

' Q+@+...

Fig. 4. The first two terms of the cluster expansion for the single particle energy E;;
a and b correspond to || > krand |l| < kr respectively.

Quite recently, one of the present authors having brought the large
internal inconsistency revealed in Brueckner’s theory by the theorem
here discussed to his attention, Brueckner reconsidered the problem in the
framework of his theory and suggested to use the theorem itself for obtaining

*) Differentiation of (1) with respect to the density p would lead to (11), provided V; would not
depend on p. We know, however, that such is not the case. '
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a better definition of the single-particle energy *). The new definition
amounts to replacing the single-particle energy E;B of the original Brueck-
ner approximation (first term in fig. 4a of ) by a shifted value E;B + ¢,
where the quantity ¢, assumed independent of the momentum /, is defined
by the condition

EB 4+ ¢ = Eg/N for [{| = kr.

An obvious correction term is then added to the formula expressing Ey in
terms of the single-particle energies. This elementary way of circumventing
the inconsistency suffers from two obvious defects. The momentum inde-
pendence of ¢ is completely unfounded in a theory where, as in Brueck-
ner’s, the potential energy part of E;B has an important momentum varia-
tion. In the second place, a proper definition of the single-particle energy
should be entirely formulated in terms of the propagation of an additional
particle (or a hole) of given momentum through the given medium. Such is
the case with the definition of E; in the general theory used here and this is
the only reason why our theorem is not trivial. Brueckner’s definition of ¢,
on the contrary, is in fact based on a comparison between two states of the
medium with two different densities.
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